
AD-A259 995

NASA Contractor Report 189742

ICASE Report No. 92-68

ICASE

IMPLEMENTATION OF A PARALLEL UNSTRUCTURED
EULER SOLVER ON SHARED AND DISTRIBUTED
MEMORY ARCHITECTURES

D. J. Mavriplis
Raja Das
Joel Saltz OTI
R. E. Vermeland 6LKT I

'IFEBO 3. 19•

NASA Contract Nos. NAS1-18605 and NAS1-19480
December 1992 .

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

•ASA :93-02124
National Aeronautics and I l I!1I il IIl III I111 :II .
Space Administration

Laoigley Research Center
Hampton, Virginia 23665-5225

IMPLEMENTATION OF A PARALLEL UNSTRUCTURED
EULER SOLVER ON SHARED AND DISTRIBUTED

MEMORY ARCHITECTURES

D. J. Mavriplis, Raja Das, and Joel Saltz1

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681

R. E. Vermeland

Cray Research, Inc.

Eagen, MN 55121

ABSTRACT

An efficient three dimensional unstructured Euler solver is parallelized on a Cray Y-

MP C90 shared memory computer and on an Intel Touchstone Delta distributed memory

computer. This paper relates the experiences gained and describes the software tools and

hardware used in this study. Performance comparisons between the two differing architec-

tures are made.
1 Accession Ter"
FNIS i

DTIC TAB
Unamounced Q
Ju tifIcation,., .

=TC QUALITY MNPEG=E 3 a SP"&A~

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract Nos. NAS1-18605 and NAS1-19480 while the first, second, and third authors were in residence at the
Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center,
Rsrnpton, VA 23681.

1. Introduction

In the past ten years, supercomputer performance has steadily increased more than one

hundred fold. This has allowed computational aerodynamicists to simulate increasingly inore

complex mathematical models of fluid flow and coml)ute the flow over more complicaled

geometries. Most aircraft mnanufacturers are today solving the inviscid formi of the Navi(eI-

Stokes equations in a production environment. The production use of such codes is limited.

however, by the difficulty of generating a suitable mesh and by the speed and size of the

computation.

The mesh generation issue has been addressed by many researchers with varying degrees

of success."' 2 One of the more promising approaches is to discretize space into tetrahedral

elements.3 ',','6 This provides a great deal of geometric flexibility so that highly complex

shapes can be modeled accurately. Several automatic mesh generation methods are being

developed which will allow engineers to more easily construct a miesh around a coniplex

aircraft configuration.7 '8 '9 As these methods become more robust, this current production

bottleneck will be removed and engineers will require fast solution times to keep project

data flowing.

The time to solution is influenced by the efficiency of the algorithm, and the sustained

computation rate of the supercomputer. The unstructured Euler solver used in this study,

EUL3D, is numerically efficient. It has been designed to minimize memory overhead, mini-

mize the amount of gather/scatter which results from the use of indirect addressing On vector

machines, and provide a rapid convergence to the steady state solution. The first two items

are achieved by using a compact, edge based data structure, which minimizes the amount

of indirect memory access required in the compute intensive routines. Accelerated converge

rates have been achieved through the use of a multigrid algorithm specifically designed to

work effectively on unstructured grids.4

EUL3D was developed on a Cray Y-MP shared memory vector/parallel computer and

ported to an Intel Touchstone Delta distributed memory parallel computer. These machines

allow solutions of large models to be computed in a matter of minutes, making production use

viable and attractive. In fact, solution times are currently fast enough to effectively use this

code in a design loop, allowing engineers to optimize aircraft shapes for best performance.

In the next few years, as supercomputers again increase sustained performance levels, such

codes may be employed as design tools in a production environment.

This paper relates the experience gained in parallelizing EUL3D on shared memory and(

distributed memory platforms. The software tools and hardware used in this stlildv are also

described and performance comparisons betweeni the i•tel Toudihtwi, Delha and the ('ray

Y-MP C90 supercomputers are given.

2. Three Dimensional Unstructured Solver

2.1. Data structure

Complex aerodynamic shapes require high resolution meshes, and consequently, large

numbers of grid points. In order to keep massive problems such as this tractable, one must

avoid incurring excessive memory and CPU overheads by using efficient data structures that

map effectively onto the machine architecture. Parallelization issues become challenging,

since unstructured solvers operate on random data sets, which result in large sparse matrices.

EUL3D uses a compact vertex based scheme, with an edge based data structure. The

flow variables are stored at each vertex in the mesh, and the residuals are assembled using

loops over the list of edges that define the connectivity of the vertices. By partitioning the

mesh or by ordering the lists of edges appropriately, work can be spread effectively over

multiple processors.

2.2. Single grid solver

Since a complete mathematical derivation and description of the solver has been previ-

ously documented by Mavriplis 4 we will present an abbreviated description of the base solver

that drives the multigrid algorithm.

A Galerkin finite element approach, using piecewise linear flux functions over each in-

dividual tetrahedra, is used to spatially discretize the domain. This type of discretization

corresponds to a central differencing approach often employed on structured meshes, and

therefore requires additional artificial dissipation to maintain stability. This is constructed

as a blend of Laplacian and biharmonic operators on the conserved variables. The bihar-

monic operator acts everywhere in the flow field except near shock waves, where the Laplacian

operator is turned on to prevent oscillations in the solution.

The spatially discretized equations form a system of coupled ordinary differential equa-

tions which are then integrated in time to obtain a steady state solution. A five stage

Runge-Kutta scheme is used for the time integration, where the convective terms are eval-

uated at each stage of the time stepping scheme, and the dissipative terms are evaluated

only at the first two stages and then frozen for the remaining stages. A complete multistage

time-step, in which the solution is advanced from time level n to i t- ! can be written as

2

W(0) = Wn

w(') = w(°)-aDt[Q(u(0)) - D(w(0))]

W(2) = w(0) - a2 Dt[Q(w(1)) - D(w())]

W(3) = - 0) - a3Dt[Q(w(2)) - n(w('))] (1)

w -(4) = 0 -) - a4 Dt[Q(w(3)) - D(w())]

W(5) = w°) - asDt[Q(w(4)) - D(w(1))]

Wn+1 = W(5)

with 1 1 3 1
a1 -, a 2 -, a 3 = -, a 4 -, a 5 = I

4 6 8 21
where w represents the conserved variables, Q(w) is the convective operator, D(w) is the

dissipative operator and Dt represents the discrete time step. The convective and dissipative

terms are computed separately. Q(w) is computed in a single loop over the edges, while D(w)

requires a two pass loop over the edges to assemble the biharmonic dissipation.

To accelerate convergence of the base solver, locally varying time steps and implicit

residual averaging are used.

The above scheme has been designed to rapidly damp out high frequency error compo-

nents, which is a necessary attribute for a good multigrid driving scheme.

2.3. Multigrid solver

The multigrid solver uses a set of progressively coarser meshes to calculate corrections

to a solution on the fine mesh. The advantages of time stepping on the coarser meshes

are twofold: first, the permissible time step is much greater, since it is proportional to the

cell size; and secondly, the computational work is much smaller due to the decrease in the

number of tetrahedra.

On the finest grid, the flow variables are updated using the five stage scheme of equations

(1). The residuals and flow variables are then transferred to the next coarser grid. If R'

represents the transferred residuals and w' the transferred flow variables, then a forcing

function ý.. the coarse grid can be defined as

P -- R' - R(w'). (z)

Now on the coarse grid, time stepping proceeds as follows

w(q) = w (q-1) - a, Dt[R(w(q-1)) + Pj (3)

3

for the q-th stage. In the first stage, w(q - 1) reduces to the transferred flow variable w'.

Therefore, the computed residuals onl the coarse grid are canceled Iv the second teri in

the forcing function P, leaving only the R' term. This indicates that the solulion oil the

coarse grid is driven by the residuals on the line grid, so that as the residlals are driveil to

zero on the fine grid, no corrections will be generated by the coarse grid. This proced ure

is repeated successively on coarser grids. When the coarsest grid is reached, the corret ilolls

are transferred back to the finer grids.

EUL3D uses a sequence of completely unrelated coarse and fine grids. In this manner.

coarse grids can be designed to optimize the speed of convergence, % hereas the fine grid

can be constructed to provide the most accurate solution. Furthermore, since iio relation

is assumed between the various meshes in the imultigrid sequence, new finer meshes can be

introduced by adaptive refinement.

Information is interpolated between the fine and coarse grids by use of four interpolation

addresses and four interpolation weights for each vertex. Since these values are static, they

are calculated in a pre-processing phase using an efficient graph traversal search algorithm.

The cost of pre-processing is roughly equivalent to one or two flow solution cycles on the

finest mesh.

The storage overhead incurred by the multigrid strategy corresponds to roughly a 33%

increase in memory over the single grid scheme, which includes the storage of all the coarser

grid levels, and the inter-grid transfer coefficients. Various multigrid strategies are possible.

In this work, both V and W multigrid cycle strategies have been examined. The two cycles

are illustrated in Figure 1.

In the case of a V-cycle, a time-step is first performed on the finest grid of the sequence.

The flow variables and residuals are then transferred to the next coarser grid, where a new

time-step is performed. The process is repeated until the coarsest grid of the sequence is

reached, and the resulting corrections are then interpolated back down to the finest grid.

Thus, within a multigrid V-cycle, a single time-step is performed on each grid level. The

W-cycle strategy, as depicted in Figure 1, is a recursive approach which weights the coarse

grids more heavily. The convergence histories of all three solution strategies for the problem

described in the next section are displayed in Figure 2.

Each multigrid W-cycle requires more operations than a V-cycle, since more coarse grid

visits are effected. In a purely sequential environment, a W-multigrid cycle requires approx-

imately 90% more CPU time than a single grid cycle, while the mmultigrid V-cycle requires

75% more CPU time. l',•wever, both miltigrid strategies provide close to an order of mnag-

nitude increase in convergence, as can be seen from Figure 2, thus greatly outweighing their

increased cost per cycle.

The W-cycle has most often been found to provide sufijcient increases in convergence

over the V-cycle strategy in order to justify its extra cost. fhowever. iII a dist riblut(dl menlory

parallel environment, the extra coarse-grid work is accoipanied by an increase(d ratio of

communication to computation, since the coarser grids represent sinaller data sets spreaI

over an equally large number of processors. The issue of which miiltigrid cycle constitmites Thie

most efficient overall solution strategy may then become an architecture-dependent prol)hlm.

2.4. Pre-processing operations

Prior to the flow solution operation, an unstructured mesh must, be generatted. In the

event that a multigrid solution strategy is to be employed, additionial coarse grids Imist

also be generated. These are constructed using an advancing front grid generator" run

sequentially on a single CRAY Y-MP processor. Each grid must then be transformed into

the appropriate edge based data structure for the flow solver, which entails constructing a

list of edges with the addresses of the two end vertices for each edge, and a set of coefficients

associated with each edge. For use on vector architectures, a coloring algorithm is ilhen

employed to divide the edge loop into multiple non-contiguous groups, such that within each

group no data recurrences occur (i.e. no two edges access the same vertex). For use on

distributed memory parallel architectures, the mesh must be partitioned an(l each partition

assigned to an individual processor. The partitioning strategy must ensure load balancing

and minimize communication by creating partitions of approximately equal size, and by

minimizing the partition surface-to-volume ratios. In the multigrid strategy, the patterns for

transferring data between the various meshes of the multigrid sequence must be determined.

This is done using an efficient graph traversal search routine in a pie-processing operation.

The result is a set of four addresses and four weights for each vertex of the mesh determnini)g

the interpolation of data from the current mesh to the next mesh in the sequence.

All of these preprocessing operations are performed sequentially on a single CRAY Y-M P

processor. Apart from the grid generation and the partitioning problem, all operations are

relatively inexpensive when implemented appropriately, usually requiring no more than the

equivalent of one or two flow solution cycles. However, the particular partitioning strategy

currently employed1 0 was found to require CPU times comparabic to the amount of time

required for the entire flow solution procedure. Furthermore, the sequential implementa-

tion of all these preprocessing operations will inevitably lead to a bottleneck as the flow

solution procedure becomes increasingly efficient with machines involving higher (hegrees of

parallelism.

On the other hand, the preprocessing may be amortize(l over a large nuniber of flow

solutions. A set of grids may be generated, preprocessed and piaritiioned or colore(d. and

then employed to solve the flow over the particular geometry for a whole range of Mach

number and incidence conditions, as is sometimes required in an industrial setting.

3. Shared Memory Implementation

3.1. Approach

The majority of the computations made in EUL3D are in loops over the edges of the mesh

and there are typically well over one million edges in a mesh around a complex geometry.

These loops move randomly through memory using indirect addressing. On a shared memory,

vector/parallel machine like the Cray Y-MP C90, it is easiest to split the loops into groups or

colors such that within each group, no recurrences occur. Each group can then be vectorized

by either adding an argument to the compile statement, or by inserting a compiler directive

at the beginning of each loop.

A simple parallelization strategy is to further divide the colorized groups into subgroups

that can be computed in parallel. This is automatically done at compile time by the auto-

tasking compiler. The subgroups are then distributed over all processors, taking advantage

of the complete vector and parallel power of the machine.

For the problem used in this work, the number of fine grid edges was about 5.5 million.

Since the typical number of groups is not high, say 20 to 30, the vector lengths within each

subgroup are still large enough to fully realize the vector speedup of the machine. However, as

the number of processors continues to increase, the vector lengths decrease, and this method

becomes less efficient for a fixed problem size. For the case run in this study, the hypothetical

use of 128 processors would still yield vector lengths of the order of 2000 elements, which is

sufficient to mask slave CPU start-up overhead while achieving good vector performance.

3.2. Performance results

Figure 3 illustrates an unstructured mesh generated over a three dimensional aircraft

configuration. The mesh contains a total of 106,064 points and 575,986 tetrahedra and is

the second finest mesh used in the multigrid sequence. The finest mesh, which is not shown

due to printing resolution limitations, contains 804,056 points and approximately 4.5 million

tetrahedra. The inviscid flow was calculated using EUL3D on a 16 processor Y-MP C90

with 256 MWords of memory. Four meshes were used in the multigrid sequence.

The freestream Mach number for this case was 0.768 and the angle of attack was 1.116

degrees. The computed Mach contours are shown in Figure 4. Good shock resolution is

observed, due to the large number of grid points employed. The convergence rates for this

case using the single grid and the two multigrid strategies are shown in Figure 2.

6

The W-cycle multigrid strategy yields the fastest convergence rate on a per cycle basis.

After 100 W-cycles, the residuals were reduced by nearly six orders of magnitude. This ru1

took 242 seconds of wall clock time running in dedicated mode, icluding the time to read all

grid files, write out the solution, and monitor the convergence by summing and printing out

the average residual throughout the flow field at each multigrid cycle. Tile run required 94

million words of memory. The average speed of the calculation was 3.1 GFlops, as measured

by the Cray hardware performance monitor.11

These results are documented in Table 1c, including the performance for runs using 1, 2,

4, and 8 processors. In Tables la and lb similar statistics are dccumented for the single grid

and the V-cycle multigrid runs. In all cases, a high degree of parallelism is achieved yielding

on the average a CPU to wall clock time ratio of 15.4 for 16 processors. This indicates that

the algorithm has achieved greater than 99% parallelism. However, total CPU time increases

are observed as the number of concurrent CPUs increases (approximately 20% increase for

16 CPUs). This is due to the overhead associated with multitasking. The overall speedup

achieved on 16 CPUs is thus 12.4 times the single CPU speed for the W-cycle in Table 1c.

Another characteristic of these runs is the relative insensitivity of the overall computa-

tional rates to the solution strategy. The single grid and the two multigrid strategies all

achieve similar computational rates on 16 CPUs. This is attributed to the high memory

bandwidth capacity of the CRAY Y-MP C90. Under these circumstances, just as in the

sequential case, the W-cycle multigrid strategy is the most effective overall. A solution con-

verged to within six orders of magnitude is obtained in 242 seconds using all 16 processors.

A similar level of convergence using the V-cycle would require roughly 360 seconds, and the

single grid strategy would require approximately 1 hour.

4. Distributed Memory Implementation

4.1. Approach

The implementation of EUL3D on the distributed memory MIMD architecture of the

Intel Touchstone Delta machine was carried out using a set of software primitives known as

PARTI (Parallel Automated Runtime Toolkit at ICASE). These tools have been designed

to ease the implementation of computational problems on parallel architecture machines by

relieving the user of low-level machine specific issues. The design philosophy has been to

leave the original (sequential) source code essentially unaltered, with the exception of the

introduction of various calls to the PARTI primitives which are imbedded in the code at the

appropriate locations. These primitives allow the distribution and retrieval of data from the

numerous processor local memories. Eventually, a parallel compiler is planned which should

7

be capable of automatically imbedding the primitives at tle appropriaii(locallols in the

source code."2 This implementation formed part of a research project ainedi at lemonst ral iig

the effectiveness of these tools, while providing valuable input to the design and formilllt ioll

of such tools.' 3

In distributed memory machines the data and the comnputational work inust. be(divided

between the individual processors. The criteria for this partitioning is to redluce tile volulme

of interprocessor data communication and also to ensure good load-balancing. q•or the case

described in this paper, this corresponds to partitioning each mesh of tlie 11ll igrid sequence

and assigning each partition to a particular processor. Since the majority of hle coniputil at iol

is performed as loops over edges of the mesh, an edge which has both end points inside the

same partition (processor) requires no outside information. 01l the otlher hand. edges which

cross partition boundaries require data from other processors at each 10op.

In this work, partitioning is done sequentially using a recursive spectral approach.'1 This

method is known to deliver good load balancing and to minimize inter-partition surface

area (and thus communication requirements). However, the expense of hlie partitioning

operation has been found to be comparable to the cost of a sequential flow solution. If

multiple flow solutions are required on the same mesh, this work can be amortized over a

large number of flow solutions, since this is a preprocessing operation. The development of

more efficient partitioning strategies is still an important concern. After the input data has

been partitioned, a data file is created for each processor to read. Although tile processors

execute the same code, the partitioning of the input data, causes each of the processors to

perform the computation o01 a separate part of the mesh.

In distributed memory MIMD architectures, there is typically a non-trivial communica-

tions latency or startup cost. For efficiency reasons. information to be transmitted should be

collected into relatively large messages. The cost of fetching array elements call be reduced

by precomputing what data each processor needs to send and to receive. In irregular prob-

lems, such as those resulting from unstructured mesh problems, this is inferred by the subset

of all mesh edges which cross partition boundaries. The communications pattern depends

on the input data (i.e. the mesh). In this case, it is not possible to predict at comp)ile time

what data must be prefetched. We work around this problem by transforming tile original

loop into two constructs called inspector and executor. 14 During program execution, the in-

spector examines the data references made by a processor, and calculates what off-processor

data needs to be fetched. The executor loop then uses the information from the inspector

to implement the actual computation. The PARTI primitives can be used directly by pro-

grammers to generate inspector/executor pairs. Each inspector produces a communicatiolls

schedule, which is essentially a pattern of communication for gathering or scattering data.

The execuitor has einlbedlte(l lPARlUI priminiti ves to gal her or scattecr da ta. 'I'lie p IFII Iiu V(,."

are dlesigned to minlimize the effect onl thle souirce code. sluch that Ihle fimlial par-allel1 code

rema ins as close as possiblle to thle original s''q uewiiial codet. I atec tiltV o startI- ipj co~st is

redutce(I by packinmg varoious snina I Ilessages NNi ItI I Ilies same dest I uit it lolli, I it lto(ltIar-e ii issa gt.

WXe performed two types of opt I Iizatiloll, both of' which 'olt ribluite(t~o iiiiprttvt l' ltotal

comin)itational rate. We Iminprove the single lprtoussor colinpuit ation rate byv reordetriulg bolil

the nodes and the edges whIch coist ittiiie thle n ,esli Next, we p~erform i coin rimiuiica t itli

optimiizationis to re(Iitce thle vohluiiie of dat a that mu11st. be transisnit t et bet wet'ui pruso,,

Thie conmmuilcation olptimnizat ions are bimlt Into thle soft ware prirlit ives.

4.2. Node and edge reordering

When the data access patterni is irregullar. as' it is InI this case' the i(SfG (thle D~elta

processors) memory hierarchy cauises low comin)utat ional rat es. Tne i8(io hias tio i rt' lvels of,

mneniory. The first, level are the registers. followed by lthe dat a cache antd lii thle emnt 1 it(,

main memory. If the (dat a access pattIerni Is suich t hat, most. of lt'e tlie tlit d a ta resit i hgia

the registe'rs andl the cache is mit ihized thlen very high coinl plut at iollial rates c-al Ihet aclictvetl

Irregu~lar dlata access p)at termis caiist' excessive cachle minsses which resuilt' Itsii perfOruli ai itt

dlegradIation.

Most of the cotnilitat iomial work lii E171,31) appears ats loop~s over miesh (,i etlgts. TIlit'

edge list was therefore reordIeredl silch t hat all the edgPsi niuleu-It(t oilita VertN tl'xr' list 't

conlsecuitively. In this man ner, once the that a for a vertex is brouight Int o I lit' cachie it (-al be~t

uised a nutmber of t imues before it is re'moved. (Oearlv, thilis ca uis's bettIer catlic OiiIizat ioul.

We also performed node renuml)('rinmg which cauises (dat a associate(d(with Iinotdles linikedt IhY

mesh edges to be stored Iin nearby memory locat ions. These 01)1inlizallt it) alonei(iultnrtlvf'

the single node compuitational rate by a factor of two.

4.3. Communications optimizations

In EIJL3D, we encouinter a variety of sitmuatiomis iii which thle same dat a is accessed bY

several consecuitive loops. For inlstance', considler a step of thme Ruinge hutitta Initegrat ion. Flow

variables are uised in sequience of three loops over edges followed by at loo) over boiiidarv

faces. The flow variables are only uipdated at t he endl of each of the Ruminge KNut I t A seps. Wet

can obtain all of the off-processor flow variables needed at the beginning of the step. This

makes it advantageouis to develop methods that avoid bringing lin thle same dat a intort thlani

once.

We have developed optinnZations which miakte it. possible t~o track and reuise off-proct'ssor

data copies. We do this by modifying our software so that we are able to generate incremental

communications schedules. Incremental schedules obtain on~y those off-processor data not

requested by a given set of pre-existing schedules. Hash-tables are used omit duplicate off-

processor data references. Using these incremental schedules we can significantly reduce the

volume of communication.

4.4. Performance results

The flow calculations performed on the Cray Y-MP ('90 were repeated on the Intel

Touchstone Delta machine. The single grid and V-cycle multigrid strategies were run on

256 and 512 processors. The W-cycle multigrid results are scaled from experience on a
smaller grid. The solution and convergence rates obtained were, of course, identical to those

(]isplayed in Figures 2 and 4. Table 2a, 2b, and 2c depict the performance statistics obtained

for these runs. The total wall clock time required to run 100 cycles for each solution strategy

is given. This time is then broken down into computation and communication time. The

computational rate (MFlops) obtained by counting the number of operations in each loop

are also given. These rates are about 10% more conservative than those based on the CRAY

hardware performance monitor11 (using a simple time scaling of the CRAY performance

numbers).

The single grid solution strategy yields the highest computational rates achieving 1.5

GFlops on 512 Delta processors. However, this method is also the slowest to converge.

The multigrid V-cycle procedure exhibits a degradation in computational rates of about

10 to 15% over the single grid case, while the W-cycle rates are estimated to be 25 to

:30% lower. This is due to the increased amount of work performed on the coarse grid

levels, which represent smaller data-sets distributed over the same number of processors,

thus increasing the communication I ,computation ratio. The communication required for

inter-grid transfers (between coarsý and fine grids of the multigrid sequence) has been found

to constitute a small fraction of the total communication costs.

The reduced computational efficiency of the multigrid strategies and the additional work

required at each cycle are more than outweighed by the faster convergence rates of these

methodi over the single grid strat gy. A single grid solution converged to 6 orders of mag-

nitude on 512 Intel Delta processors would require approximately 1 hour of wall clock time,

while the V and estimated W-cycle multigrid strategies would require 1083 and 84:3 seconds

respectively. For certain cases the V-cycle may be the most effective strategy for the Intel

Delta.

10

5. Shared vs. Distributed Memory - A Comparison

From the preceding sections, it is evident that the performance of EITL3D on bolh l ma-

chines is comparable with the Y-M P ('90 outperforming the Touchstone Delta by roughly a

factor of two. The 512 Intel Delta machine appears to be roughly equivalent to a 5 processor

CRAY Y-MP C90. The full CRAY Y-MP ('90 achieved roughly 21% of its peak rated per-

formance, while the Intel Delta achieved 5% of its theoretical peak. Both machines miss the

mark on peak performance, mainly due to indirect addressing an(] the random nature of the

data-sets. Such low utilization on the Intel i860 processors is rather common, and can be at-

tributed to the small cache and low memory bandwidth of the processors. More significantly

perhaps, is the ratio of computati(;f to communication achieved on the 512 processor Delta

machine, which is of the order of 50(X for this problem, thus implying a relatively efficient

implementation. This ratio, however, varies significantly with the size of the problem, the

number of processors employed, and the particular solution strategy chosen. On the other

hand, the computational rates achieved on the CR \Y Y-MP C90 are relatively insensitive

to problem size and solution strategy, a fact which is attributable to the shared memory

architecture of the machine, and the large bandwidth to memory.

Parallelizing EUL3D on the CRAY Y-MP ('90 was a relatively simple task, while the im-

plementation on the Intel Touchstone Delta machine formed the basis of a research project."3

The main reason for this disparity in efforts is the existence of sophisticated software tools

such as automatic vectorizing and parallelizing compilers for the CRAY Y-MP series ma-

chines. While such tools are currently unavailable for distributed memory architectures, the

current implementation was carried out using a set of experimental tools (i.e. the PARTI

primitives) with the aim of demonstrating the effectiveness of such tools, as well as aiding in

their formulation and development. The situation can be likened to tile early (lays of vector

supercomputing, when considerable programming effort was required to achieve the full vec-

tor potential of such machines. We believe that software tools will be critically important in

determining the success of various parallel architectures in the future.

6. Conclusions

We have shown that a numerically efficient computational fluid dynamics code can be

parallelized on both shared memory and distributed memory machines. Both machines yield

comparable performance rates. Howev,-r, the availability of sophisticated software tools en-

abled the parallelization of EIL:3D on the shared memory vector/parallel ('RAY Y-MP ('90

with minimal user input. On the other hand, the implementation on the distributed memory

massively parallel architecture of the Intel Touchstone DELTA machine is consideral)lv more

I1

involved. As massively parallc' 6uf~ware tools become more mature, the task of developing

or porting software to such machines should diminish.

We have also shown that with today's supercomputers, and with efficient codes such as

EUL3D, the aerodynamic characteristics of complex vehicles can be computed in a matter

of minutes, making design use feasible.

With the availability of rapid solution procedures, grid generation and preprocessing

operations, which are presently executed sequentially, become the bottlenecks. In particular,

the partitioning strategy employed for the distributed memory parallel implementation ,

although effective, is excessively costly. More research is required in this area in order

to develop more efficient and parallel partitioners. Finally, the issues involved in parallel

mesh generation and parallel adaptive mesh refinement must also be investigated in order

to develop a complete and effective solution package.

12

References

[1] Thompson, J. F., "A Composite Grid Generation Code for General Thre-limensio Ia

Regions," AIAA Paper 87-0275, January, 1987.

[2] Benek, J. A., Buning, P. G., and Steger, J. L., "A ;3-D Chimera Grid Embedding

Technique," AIAA Paper 85-1523-CP, July, 1985.

[31 Jameson, A., Baker, T. J., and Weatherill, N. P., "Calculation of Inviscid Transonic

Flow Over a Complete Aircraft," AIAA Paper 86-0103, January, 1986.

[4] Mavriplis, D. J., "Three Dimensional Unstructured Multigrid for the Euler Equations."

Proc. of the AIAA 10th Comp. Fluid Dyn. Conf., AIAA Paper 91-1549, June, 1991.

[5] Smith, W. A., "Multigrid Solution of Transonic Flow on Unstructured Grids," Re-

cent Advances and Applications in Computational Fluid Dynamics, Proceedings of the

ASME Winter Annual Meeting, Ed. 0. Baysal, November, 1990.

[6] Peraire, J., Peiro, J., and Morgan, K., "A 3D Finite Element Multigrid Solver for the

Euler Equations," AIAA Paper 92-0449, January, 1992.

[7] Baker, T. J., "Three Dimensional Mesh Generation by Triangulation of Arbitrary Point

Sets," Proc. of the AIAA 8th Comp. Fluid Dyn. Conf., AIAA Paper 87-1124. June.

1987.

[8] Weatherill, N. P., "The Delaunay Triangulation," In Advances in Numerical Grid Gen-

eration, Mississippi State University Grid Courses, August, 1990.

[9] Gumbert, C., Lohner, R., Parikh, P., and Pirzadeh, S., "A Package for Unstructured

Grid Generation and Finite Element Flow Solvers," AIAA Paper 89-2175, June 1989.

[10] Pothen, A., Simon, H. D., and Liou, K. P., "Partitioning Sparse Matrices with Eigen-
vectors of Graphs," SIAM J. Math Anal. Appl., 11:430-452, 1990.

[111 UNICOS Performance Utilities Reference Manual, SR-2040 6.0, Cray Research, Inc.

[12] Saltz, J., Berryman, H., and Wu, J., "Runtime Compilation for Multiprocessors," Coil-
currency, Practice and Experience, 3(6):573-592, 1991.

[13] Das, R., Mavriplis, D. J., Saltz, J., Gupta, S., and Ponnusamy, R.. "The Design and

Implementation of a Parallel Unstructured Euler Solver Using Software Primitives."

AIAA Paper 92-0562, January, 1992.

13

[14] Mirchandaney R., Saltz J. H., Smith R. M., Nicol D. M., and Crowley K., "Principles of

Runtime Support for Parallel Processors," Proceedings of the 1988 ACM International

Conference on Supercomputing, St. Malo France, pages 140-152, July, 1988.

14

CPUs Wall Clock CPU sec. Mkiops
1 1916 1878 252

2 974 1909 495
4 508 1957 966

8 273 2038 1856
16 156 2185 :3252

Table la: Y-MP C90 speeds for EUL3D running 100 single grid cycles.

CPUs Wall Clock CPU sec. MFlops

1 2586 2557 247
2 1326 2611 485

4 698 2572 945
8 380 2805 1804

16 223 3085 3161

Table 1b: Y-MP C90 speeds for EUL3D running 100 multigrid cycles using the V cycle.

CPUs Wall Clock CPU sec. MFlops

1 3041 2992 249
2 1552 3048 484

4 815 3146 939
8 444 3323 1790
16 268 3709 3136

Table Ic: Y-MP C90 speeds for EUL3D running 100 multigrid cycles using the W cycle.

15

Nodes Seconds per 100 cycles Rate

Communication Computation Total MFlops
256 121 326 448 778
512 95 170 265 1496

Table 2a: Touchstone Delta speeds for EUL3D running 100 single grid cycles.

Nodes Seconds per 100 cycles Rate

Communication Computation Total MFlops
256 536 427 963 680
512 374 231 605 1252

Table 2b: Touchstone Delta speeds for EUL3D running 100 multigrid cycles using the V

cycle.

Nodes Seconds per 100 cycles Rate
Communication Computation Total MFlops

256 787 596 1383 573
512 565 278 843 1030

Table 2c: Estimated Touchstone Delta speeds for EUL3D running 100 multigrid cycles using

the W cycle.

16

E ~E E

3 Levels 3 Levels

E E

NE \VE

4 Levels 4 Levels

5 Levels 5 Levels

Figure 1: Multigrid V and W-cycles. Euler time steps are depicted by E, interpolations are

depicted by I.

0

10-2

Single grid

10-4

10.6 . W-cycle

0 100 200 300 400 500

Figure 2: Convergence history for single grid and for V and W multigrid cycles.

17

Figure 3: Unstructured mesh about a three dimensional aircraft configuration. The mesh

shown is the second finest in the multigrid sequence and contains 106,064 nodes and 575,986

tetrahedra. The finest mesh, which is not shown due to printing limitations, contains 804,056

modes and approximately 4.5 million tetrahedra.

Figure 4: Computed Mach contours of Transonic Flow over Aircraft Configuration.

18

REPORT DOCUMENTATION PAGE §j' 'i'.

1. AGENCY USE ONLY ý,ed-ve 013,".)it" REPOF.T DA)TE 3 REP3FT TYPE AND• D)•TiS COvERFL)
!IDecember 1992 [Contractor Report

4. TITLE AND SUBTiTLE ; 5 FUT)D;NG NJI•%,EFS
IMPLEMENTATION OF A PARALLEL UNSTRUCTURED EULER SOLVER

ON SHARED AND DISTRIBUTED MEMORY ARCHITECTURES C NASl-18605
C NAS1-19480

6. AUTHOR(S)

D.J. Mavriplis, Raja Das, Joel Saltz and R.E. Vermeland WU 505-90-52-01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. Pi ' M'.% O.RGANI;©;,REPOrtý' BInstitute for Computer Applications in Science

and Engineering ICASE Report No. 92-68
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-0001 I

9. SPONSORING;MONITORING AGENCY NAME(S) AND ADDRESS(ES) 1, 10 SPONSORING MOWTOR•iNG9EAGENCY REPORT NUMBER

National Aeronautics and Space Administration N
Langley Research CenterI Report No. 92-68
Hampton, VA 23681-0001 ICASE

11. SUPPLEMENTARY NOTES Appeared in Supercomputing '92 Proc..

Langley Technical Monitor: Michael F. Card -- Submitted to the Journal of
Final Report Supercomputing

12a. DISTRIBUTION AVAILABILITY STATEMENT j 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 02, 34

13. ABSTRACT (Maximum 200 words)
An efficient three dimensional unstructured Euler solver is parallelized on a
Cray Y-MP C90 shared memory computer and on an Intel Touchstone Delta distributed

memory computer. This paper relates the experiences gained and describes the soft-
ware tools and hardware used in this study. Performance comparisons between two
differing architectures are made.

14. SUBJECT TERMS 15. NUMBER OF PAGES

unstructured; parallel; shared memory; CRAY 20
16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 118. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclass if ied Unclassified

NSN 7540-01-280-5500 Stanrard Form 298 (Rev 2 89)

NA S A-I..ngI,. Iq92

